Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils
نویسندگان
چکیده
Previous studies have shown that fertilization with nitrogen depresses overall microbial biomass and activity in soil. In the present study we broaden our understanding of this phenomenon by studying the seasonality of responses of specific microbial functional groups to chronic nitrogen additions in alpine tundra soils. We measured soil enzyme activities, mineralization kinetics for 8 substrates, biomass of 8 microbial functional groups, and changes in N and carbon pools in the soil. Our approach allowed us to compare the ability of the soil microbial biomass to utilize various substrates in addition to allowing us to estimate changes in biomass of microbial functional groups that are involved in carbon and nitrogen cycling. Overall microbial activity and biomass was reduced in fertilized plots, whereas pools of N in the soil and microbial biomass N were higher in fertilized plots. The negative effects of N were most prominent in the summer. Biomass of the dominant microbial functional groups recovered in fertilized soils during the winter and nitrogen storage in microbial biomass was higher in fertilized soils in the autumn and winter than in the summer. Microbial immobilization of N may therefore be a significant sink for added N during autumn and winter months when plants are not active. One large microbial group that did not recover in the winter in fertilized soils was phenol mineralizers, possibly indicating selection against microbes with enzyme systems for the breakdown of phenolic compounds and complex soil organic matter. Overall, this work is a step towards understanding how chronic N additions affect the structure and biogeochemical functioning of soil microbial communities.
منابع مشابه
The effect of nutrient deposition on bacterial communities in Arctic tundra soil.
The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously obser...
متن کاملMicr.obial Responses to Nitrogen Additions in Alpine Tundra Soil
S#oil nitrogen transformations were measured the year following nitrogen fertilization of alpine Kobresia myosuroides meadows to determine the influence of greater plant production and N content on net N mineralization and the microbial N pool. Previously fertilized soils contained substantially greater amounts of organic N than control soils. The average increase in soil organic N accounted fo...
متن کاملCarbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils
Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil ...
متن کاملMicrobial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic condit...
متن کاملComparison of Seasonal Soil Microbial Process in Snow-Covered Temperate Ecosystems of Northern China
More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer ...
متن کامل